If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x-0.8x^2=0
a = -0.8; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-0.8)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-0.8}=\frac{-32}{-1.6} =+20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-0.8}=\frac{0}{-1.6} =0 $
| -4f-9=-9f+6 | | X(2x-9)=(2x+1)(x-6) | | ((2x+12)/3)+((x-12)/4)=13/2 | | (2x-6)+(x+7)=(5x-6x+2) | | -9k=10-10k | | 44x-0.8x^2=0 | | (3)/(4)x+(1)/(2)=(1)/(4)(x-2) | | -4j+7=-3j | | 7c-9=10c+9 | | 8x-(6x+4)=4x-22 | | 36y-28=4(9y-7) | | -10s-8=4s+2-8s | | 1-2y+5=8y-2 | | −3x−1=-8x+34− | | -4q+3=-7-2q | | x+2+9x-346+9x-296=180 | | -72=-z | | 10h+9=7h | | 1-u=2u+7 | | 6(4x+6-(100)=0 | | -8t=88 | | 6(4x+6=100 | | 2x-8=x+25 | | 17+3y=38+14= | | 10j=8j-8 | | 13(x+6)=12(x-3) | | (4x)^3÷3^3=512 | | 9(v+2)=5v+10 | | 86=13(x+4) | | b6/5=10 | | 4y-3+y+27=6y+30-3y | | x+(x+10)+(220-3x)=180 |